已知正切值 \( \tan \theta = \frac{\sin \theta}{\cos \theta} \),可以通过以下步骤求出 \( \sin \theta \) 和 \( \cos \theta \) 的值:
利用三角恒等式
\( \sin^2 \theta + \cos^2 \theta = 1 \)
代入正切定义
\( \tan \theta = \frac{\sin \theta}{\cos \theta} \)
\( \sin \theta = \tan \theta \cdot \cos \theta \)
代入三角恒等式
\( \tan^2 \theta \cdot \cos^2 \theta + \cos^2 \theta = 1 \)
\( \cos^2 \theta (\tan^2 \theta + 1) = 1 \)
\( \cos^2 \theta = \frac{1}{\tan^2 \theta + 1} \)
求 \( \cos \theta \)
\( \cos \theta = \pm \frac{1}{\sqrt{\tan^2 \theta + 1}} \)
求 \( \sin \theta \)
\( \sin \theta = \tan \theta \cdot \cos \theta \)
\( \sin \theta = \pm \frac{\tan \theta}{\sqrt{\tan^2 \theta + 1}} \)
注意:正负号取决于 \( \theta \) 所在的象限。
例如,如果 \( \tan \theta = 2 \),则:
\( \cos \theta = \pm \frac{1}{\sqrt{2^2 + 1}} = \pm \frac{1}{\sqrt{5}} \)
\( \sin \theta = \pm \frac{2}{\sqrt{5}} \)
请根据具体情况确定正负号