在Python中,进行数值插值通常使用`scipy.interpolate`库中的`interp1d`函数。下面是一些常用的插值方法及其示例代码:
线性插值
import numpy as npfrom scipy.interpolate import interp1d已知数据点x = np.array([1, 2, 3, 4])y = np.array([10, 20, 30, 40])创建线性插值函数f_linear = interp1d(x, y)在新的数据点上进行插值x_new = np.array([1.5, 2.5, 3.5])y_new_linear = f_linear(x_new)print("线性插值结果:", y_new_linear)
多项式插值
import numpy as npfrom scipy.interpolate import interp1d已知数据点x = np.array([1, 2, 3, 4])y = np.array([10, 20, 30, 40])进行多项式插值coefficients = np.polyfit(x, y, deg=len(x)-1)f_poly = np.poly1d(coefficients)在新的数据点上进行插值x_new = np.array([1.5, 2.5, 3.5])y_new_poly = f_poly(x_new)print("多项式插值结果:", y_new_poly)
三次样条插值
import numpy as npfrom scipy.interpolate import interp1d已知数据点x = np.linspace(0, 10, 11)y = np.sin(x)创建三次样条插值函数f_spline = interp1d(x, y, kind='cubic')在新的数据点上进行插值x_new = np.linspace(0, 10, 101)y_new_spline = f_spline(x_new)可视化结果import matplotlib.pyplot as pltplt.plot(x, y, 'ro', label='原始数据')plt.plot(x_new, y_new_spline, label='三次样条插值')plt.legend()plt.show()

