使用Python建立ARIMA模型的基本步骤如下:
导入必要的库
import pandas as pdfrom statsmodels.tsa.arima.model import ARIMAfrom statsmodels.graphics.tsaplots import plot_acf, plot_pacffrom sklearn.metrics import mean_squared_errorimport matplotlib.pyplot as plt
加载数据
假设数据存储在CSV文件中data = pd.read_csv('your_data.csv', parse_dates=['Date'], index_col='Date')
数据可视化
绘制时间序列图data.plot()plt.show()
平稳性检验
使用ADF检验from statsmodels.tsa.stattools import adfullerresult = adfuller(data['value_column'])print('ADF Statistic: %f' % result)print('p-value: %f' % result)
模型定阶
绘制ACF和PACF图plot_acf(data)plot_pacf(data)plt.show()

建立ARIMA模型
根据ACF和PACF图确定p,d,q参数例如,假设p=1, d=1, q=1model = ARIMA(data, order=(1, 1, 1))results = model.fit()
模型检验
检查残差是否白噪声residuals = results.residplot_acf(residuals)plt.show()
模型预测
预测未来n个时间点的值forecast = results.get_forecast(steps=n)forecast_index = pd.date_range(start=data.index[-1], periods=n, closed='right')forecast_series = pd.Series(forecast.predicted_mean, index=forecast_index)print(forecast_series)
模型评估
计算预测的均方误差mse = mean_squared_error(data['value_column'][-n:], forecast_series)print('Mean Squared Error: %.3f' % mse)
请根据你的具体数据集调整参数,并执行相应的步骤。
